Creating a world fit for the future

AQ sensors and how best to use them

Welsh Air Quality Forum Annual Seminar 28th September 2021

www.**ricardo**.com

© Ricardo plc 2017

Introduction

- What is a low(er) cost sensor
- Pros and Cons
- Legislation / Standardisation
- Quality Assurance / Quality Control
- Applications

Definitions

 Sensor – a component that responds to a pollutant in some way

 Sensor system (or device) – a product built with sensors, with controlling firmware / hardware

Reference analyser – an instrument with tested and quantified performance

Sensors - Pros and Cons

There are many factors to consider:

Pros	Cons
Low cost	
Low power	
Portable	
Deployability	
High time resolution	
Microenvironment mapping	
Ease of use?	

Sensors - Pros and Cons

There are many factors to consider:

Pros	Cons
Low cost	Data Quality
Low power	Drift
Portable	Noise
Deployability	Limit of detection
High time resolution	Repeatability
Microenvironment mapping	Uncertainty
Ease of use?	Ease of use?

Monitoring Legislation - Ambient

• EU / National Legislation / WHO guidance

Clearly defined measurement uncertainties:

Reference (or Equivalent) / Indicative

- NO₂ ±15% / 25%
- PM ±25% / 50%

(at the region of the Limit Value)

Monitoring Legislation - Ambient

 EU / National Legislation / WHO guidance (very tough new Air Quality Guideline levels)

Clearly defined measurement uncertainties:

Reference (or Equivalent) / Indicative

- NO₂ ±15% / 25%
- PM ±25% / 50%

(at the region of the Limit Value)

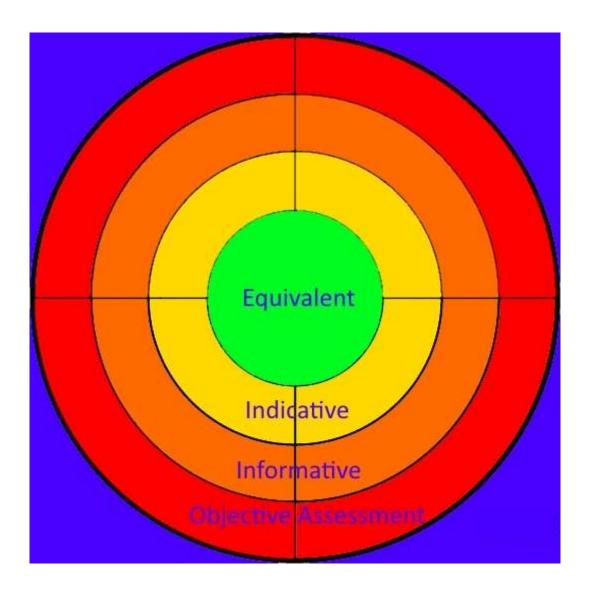
Pollutant	Averaging time	Interim target			AQG level	
		1	2	3	4	
PM _{2.5} , µg/m³	Annual	35	25	15	10	5
	24-hour*	75	50	37.5	25	15
PM ₁₀ , µg/m³	Annual	70	50	30	20	15
	24-hour*	150	100	75	50	45
O ₃ , µg/m³	Peak season ^b	100	70	-	σ^{-1}	60
	8-hour ^a	160	120	÷	-	100
NO ₂ , µg/m³	Annual	40	30	20	27	10
	24-hour ^e	120	50	-	\simeq	25
SO ₂ , µg/m³	24-hour ^a	125	50	-	- 1	40
CO, mg/m ³	24-hour ^a	7	-	-	-	4

* 99th percentile (i.e. 3-4 exceedance days per year).

^b Average of daily maximum 8-hour mean O₃ concentration in the six consecutive months with the highest six-month running-average O₃ concentration.

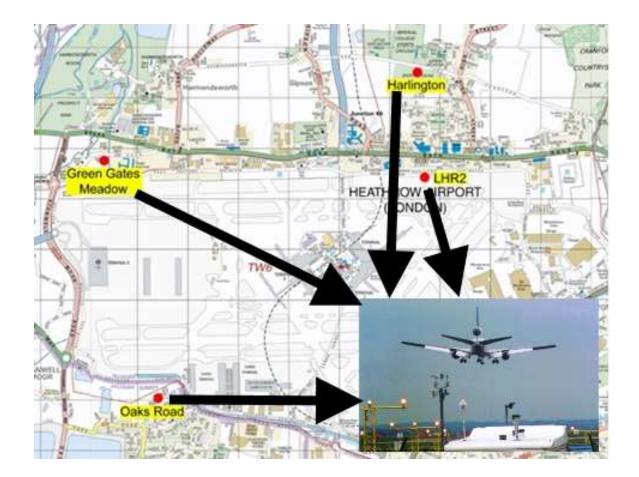
Development of performance testing – CEN WG42 activity

- WG42 investigating how to test sensor systems
- Not working in isolation: wide consultation with interested parties
- Main challenges:
 - Cost of testing vs price of systems
 - Test sensors? Test end products?
 - Time required for test programme
 - Speed of sensor development
 - Where / when to test?
 Hot/Cold/Wet/Dry/UB/Traffic/Industrial
 - Software or algorithm updates


An EN specification document is nearly here...

Development of performance testing – fitness for purpose.

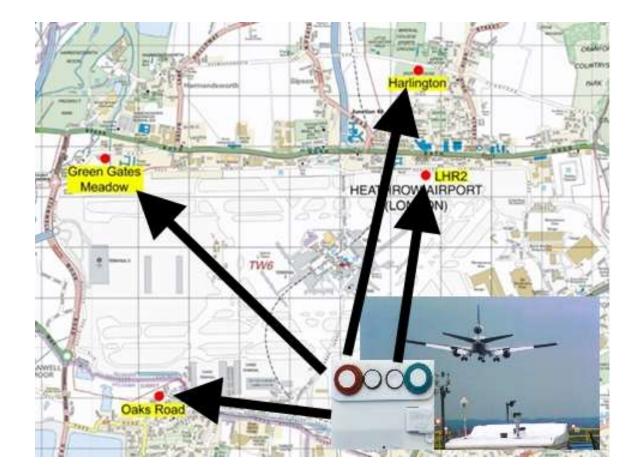
- Test programme needs to allow us to categorise performance.
- Already exists for Equivalence (and type testing for reference devices)
- EN specification:
 - Indicative (Class 1)
 - Informative (Class 2)
 - Objective Assessment (Class 3)


Ongoing QC – Method 1

Ongoing assessment probably more important than certification...

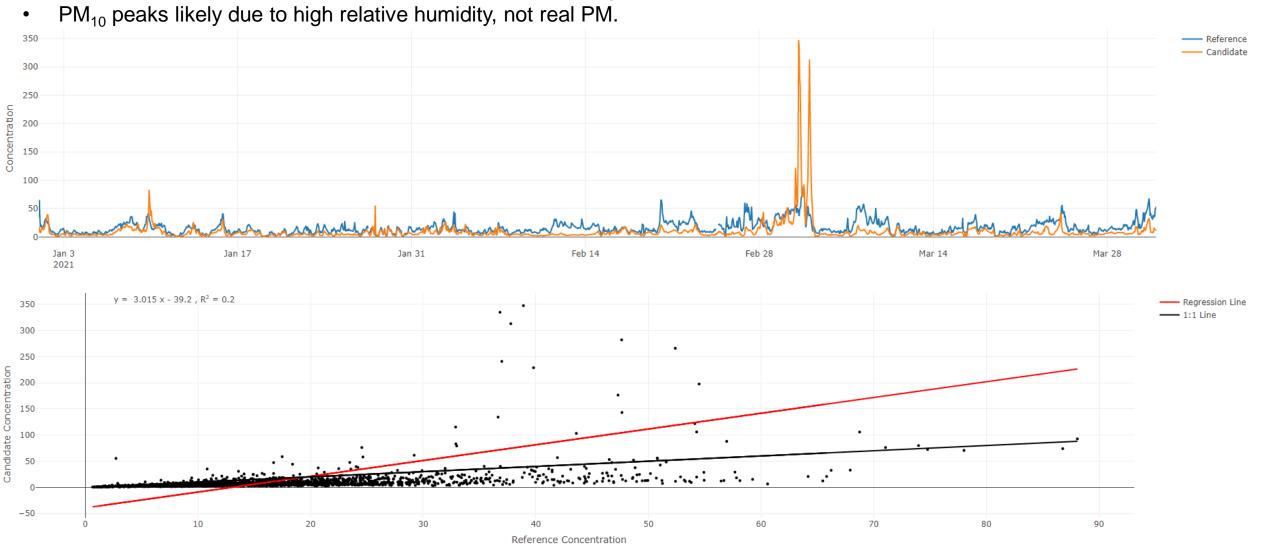
Methods include:

 All sensor systems regularly assessed against a true reference station

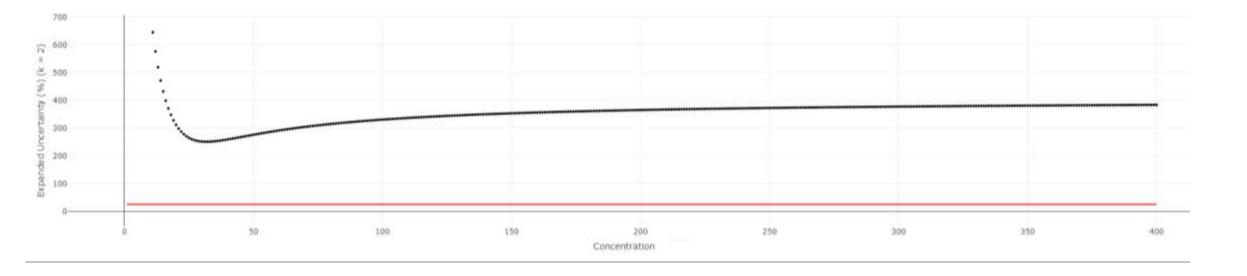

Ongoing QC – Method 2

Ongoing assessment probably more important than certification...

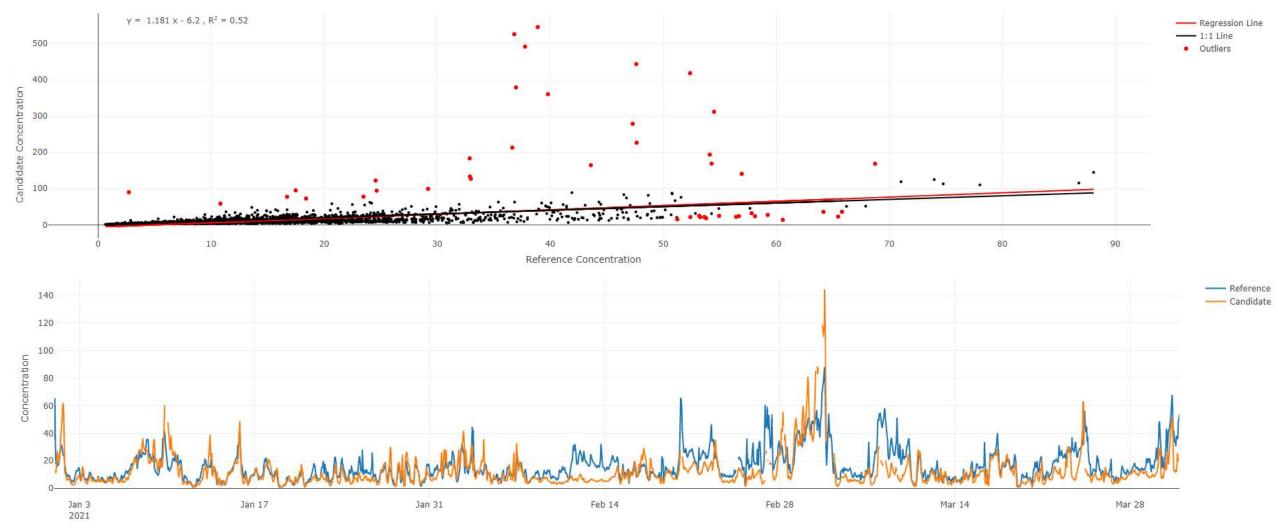
Methods include:


- All sensor systems regularly assessed against a true reference station
- One system regularly assessed against a reference station, then used as a transfer standard at other system locations

Example PM₁₀ sensor system data

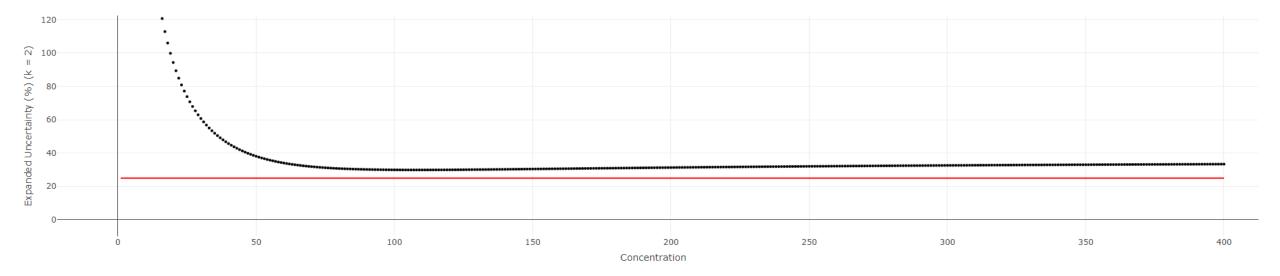

- Sensor data trends well with the reference analyse in some places but there are obvious outliers.
- Makes it difficult to derive a correction factor from linear regression analysis (poor correlation, R² = 0.2).

Example PM₁₀ sensor system – uncorrected measurement uncertainty


- Red line is ±25%.
- Uncertainty in hourly PM_{10} concentrations is ±276% at a limit value of 50 µg m⁻³.
- If we use the regression results in the previous slide to correct the data the uncertainty is still ±143%
- Can we improve on this?

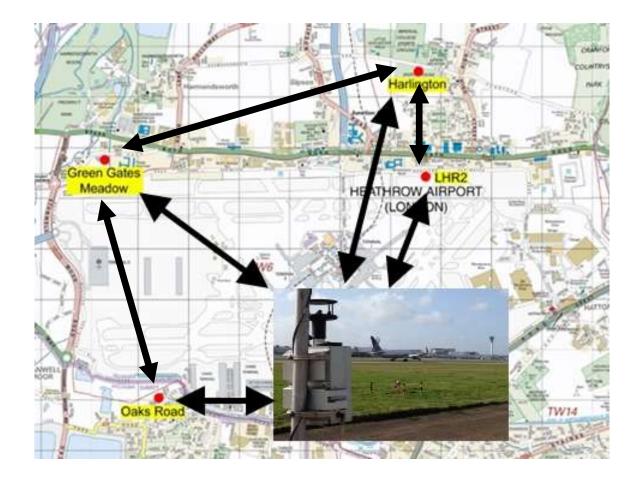
Example PM₁₀ sensor system – corrected

- Remove outliers through statistical analysis.
- Improved $R^2 = 0.52$.
- Correct data using new linear regression model.



Example PM₁₀ sensor system – corrected measurement uncertainty

- Uncertainty in corrected hourly PM₁₀ concentrations is now ±38% at a limit value of 50 μg m⁻³!
- This indicates that the corrected measurements are indicative in this case e.g. U < ±50% for PM₁₀ with appropriate QA/QC applied.
- Note that the measurement uncertainty is not constant throughout the measurement range, especially at low concentrations.
- Think back to the new PM_{10} WHO Air Quality Guideline of 10 µg m⁻³ U = ±202% (*with the caveat that we are comparing hourly data with an annual mean*).


Ongoing QC – there is a 3rd method

Ongoing assessment probably more important than certification...

Methods include:

- All sensor systems regularly assessed against a true reference station
- One system regularly assessed against a reference station, then used as a transfer standard at other system locations
- Use of advanced processing protocols to compare system responses and scale datasets

Once you have comparison data, you can start to challenge and use the measurements

Machine learning / advanced data training

RICARDO

- Sensors of the same type typically behave similarly when exposed to the "same" weather.
- Means it is possible to look at large networks of sensor systems and process them for baseline and response profiles, either manually or using some form of AI
- Consistent internal QC will be useful for building detailed pollution maps / clean routes to work, mitigation strategies etc.
- But: serious processing / communications requirements not cheap.

Applications

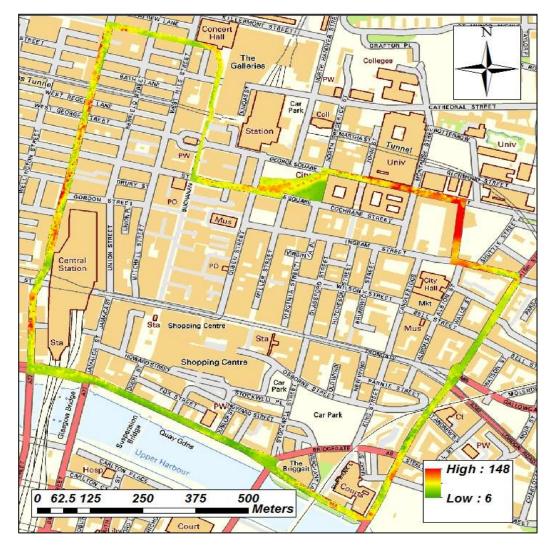
Question	Answer
Can I use sensor systems instead of "proper" monitoring?	
Can I use sensor systems instead of diffusion tubes?	
Can I use sensor systems to identify hotspots?	
Can I use sensor systems to improve modelling data?	
What about mobile measurements?	
Can I use sensor systems to assess mitigation strategies?	
Can I use sensor systems at schools, indoors, in-car, etc?	
Can I "fit and forget"?	

Applications

Question	Answer
Can I use sensor systems instead of "proper" monitoring?	No
Can I use sensor systems instead of diffusion tubes?	
Can I use sensor systems to identify hotspots?	
Can I use sensor systems to improve modelling data?	
What about mobile measurements?	
Can I use sensor systems to assess mitigation strategies?	
Can I use sensor systems at schools, indoors, in-car, etc?	
Can I "fit and forget"?	

Question	Answer
Can I use sensor systems instead of "proper" monitoring?	No
Can I use sensor systems instead of diffusion tubes?	Maybe
Can I use sensor systems to identify hotspots?	
Can I use sensor systems to improve modelling data?	
What about mobile measurements?	
Can I use sensor systems to assess mitigation strategies?	
Can I use sensor systems at schools, indoors, in-car, etc?	
Can I "fit and forget"?	

Question	Answer
Can I use sensor systems instead of "proper" monitoring?	No
Can I use sensor systems instead of diffusion tubes?	Maybe
Can I use sensor systems to identify hotspots?	Yes
Can I use sensor systems to improve modelling data?	
What about mobile measurements?	
Can I use sensor systems to assess mitigation strategies?	
Can I use sensor systems at schools, indoors, in-car, etc?	
Can I "fit and forget"?	

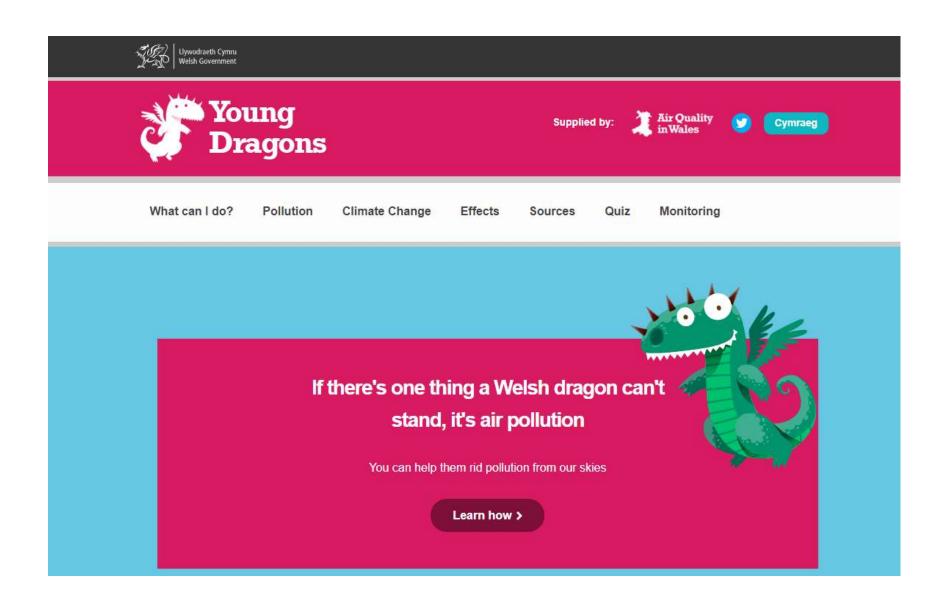


Question	Answer
Can I use sensor systems instead of "proper" monitoring?	No
Can I use sensor systems instead of diffusion tubes?	Maybe
Can I use sensor systems to identify hotspots?	Yes
Can I use sensor systems to improve modelling data?	Maybe
What about mobile measurements?	
Can I use sensor systems to assess mitigation strategies?	
Can I use sensor systems at schools, indoors, in-car, etc?	
Can I "fit and forget"?	

Applications – mobile and hotspot identification

Particulate Matter (PM₁₀)

Nitrogen Dioxide (NO₂)


Question	Answer
Can I use sensor systems instead of "proper" monitoring?	No
Can I use sensor systems instead of diffusion tubes?	Maybe
Can I use sensor systems to identify hotspots?	Yes
Can I use sensor systems to improve modelling data?	Maybe
What about mobile measurements?	Yes
Can I use sensor systems to assess mitigation strategies?	
Can I use sensor systems at schools, indoors, in-car, etc?	
Can I "fit and forget"?	

Question	Answer
Can I use sensor systems instead of "proper" monitoring?	No
Can I use sensor systems instead of diffusion tubes?	Maybe
Can I use sensor systems to identify hotspots?	Yes
Can I use sensor systems to improve modelling data?	Maybe
What about mobile measurements?	Yes
Can I use sensor systems to assess mitigation strategies?	Maybe
Can I use sensor systems at schools, indoors, in-car, etc?	
Can I "fit and forget"?	

Applications – awareness raising / education

Question	Answer
Can I use sensor systems instead of "proper" monitoring?	No
Can I use sensor systems instead of diffusion tubes?	Maybe
Can I use sensor systems to identify hotspots?	Yes
Can I use sensor systems to improve modelling data?	Maybe
What about mobile measurements?	Yes
Can I use sensor systems to assess mitigation strategies?	Maybe
Can I use sensor systems at schools, indoors, in-car, etc?	Yes
Can I "fit and forget"?	

Question	Answer
Can I use sensor systems instead of "proper" monitoring?	No
Can I use sensor systems instead of diffusion tubes?	Maybe
Can I use sensor systems to identify hotspots?	Yes
Can I use sensor systems to improve modelling data?	Maybe
What about mobile measurements?	Yes
Can I use sensor systems to assess mitigation strategies?	Maybe
Can I use sensor systems at schools, indoors, in-car, etc?	Yes
Can I "fit and forget"?	No/Maybe

You'll still need to keep a keen eye on QA/QC!

Questions

