DOES VEGETATION REDUCE AIR POLLUTION ?

Laurence Jones¹, Bill Bealey¹, Eiko Nemitz¹, Stefan Reis¹, Dan Morton¹, Gina Mills¹, Felicity Hayes¹, Massimo Vieno¹, Ed Carnell¹, Jane Hall¹, Rachel Beck¹, Ian Dickie², Philip Cryle², Mike Holland³

¹ Centre for Ecology & Hydrology, NERC; ² Economics for the Environment Consultancy (Eftec);

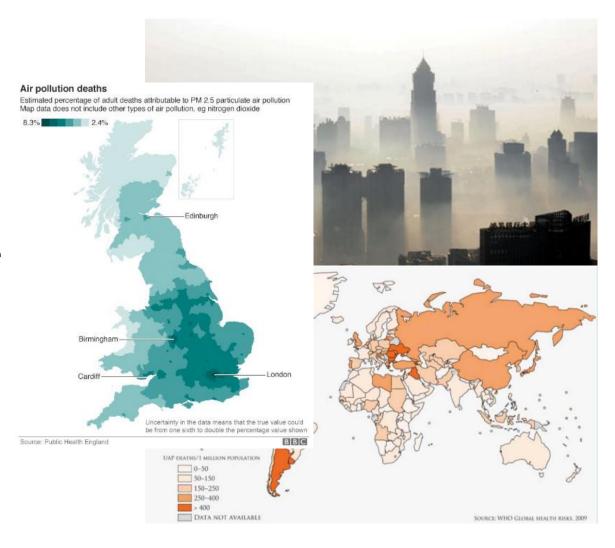
¹ Centre for Ecology & Hydrology, NERC; ² Economics for the Environment Consultancy (Eftec);
³ Ecometrics Research and Consulting (EMRC)

AIR POLLUTION AND HUMAN HEALTH

5.5 million deaths globally 40,000 deaths, UK

Which pollutants are harmful?

PM10


PM2.5

NO₂

NH3

03

SO2

AIR POLLUTION REMOVAL BY TREES, IN THE LITERATURE

London's trees remove 2.2 kt pollutants (i-tree Eco)

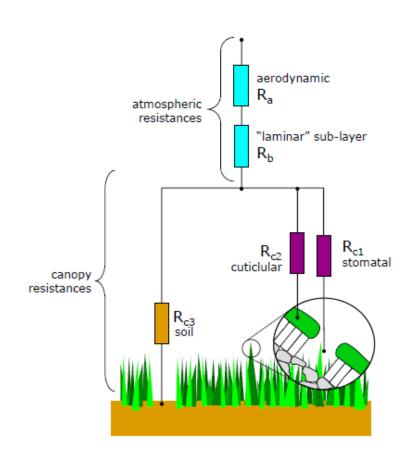
Trees reduce pollutant concentrations by 1 – 10% (Nowak et al. 2013)

Rome (Manes et al., 2012)

- Ozone ~\$3 million/yr for human health benefits (risk of mortality due to ozone)
- PM₁₀ \$36 million/yr

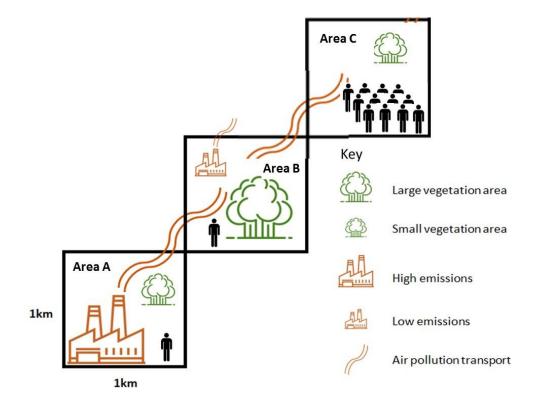
Case study small area (10 km x 10 km) in London (Tiwary et al., 2009)

• PM10 2 less deaths and 2 less hospital emissions per year.


Nyhan M. 2015, SENSEable City Lab, MIT

MECHANISMS OF POLLUTANT REMOVAL

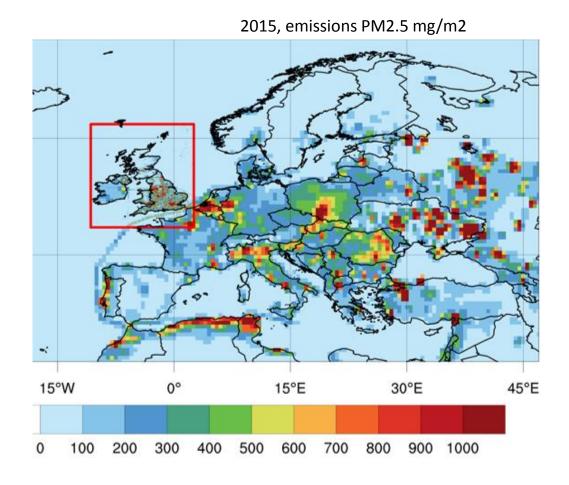
Aerodynamic resistance
Boundary resistance
Canopy resistance
To surface
To stomata



IMPROVEMENTS TO THE METHODOLOGY

Spatial context:

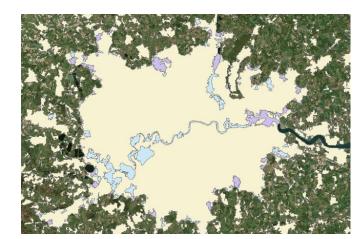
- Location of beneficiaries
- II. Health damage function
- III. Chemical and climate interactions



THE EMEP4UK ATMOSPHERIC CHEMISTRY TRANSPORT MODEL

- 5x5km (~2x2km)
- Hourly timestep
- Generates concentrations from emissions
- Chemical & meteorological interactions
- Transport
- Five pollutants
 (PM2.5, SO2, NH3, NO2, O3)

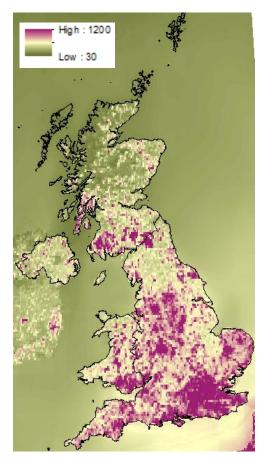


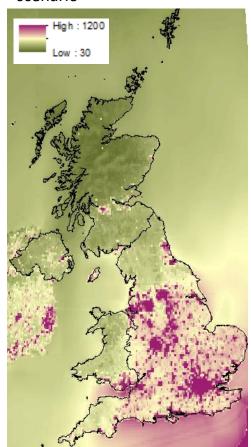


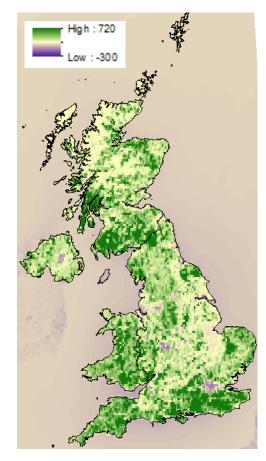
SCENARIO APPROACH TO MODELLING

- Physical account: EMEP4UK atmospheric transport model
- Health and monetary account: ALPHA RiskPoll model
- Scenario approach
- Separate UK & urban calculations

NEW URBAN EXTENT, DETAIL ON CARDIFF



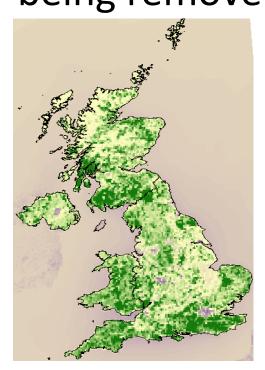


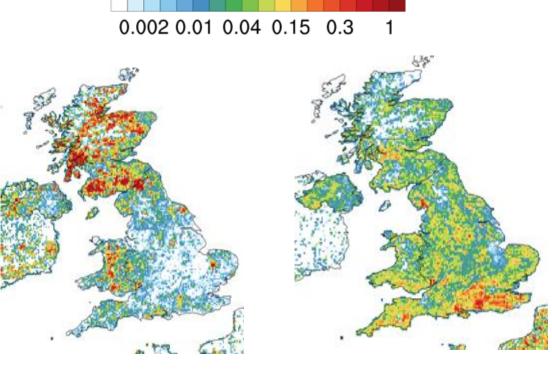

Base map, 2015

No vegetation scenario

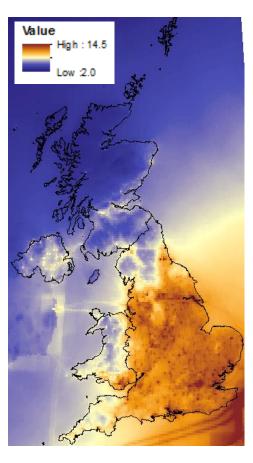
Difference map

Quantity of PM2.5 removed (mg/m2)

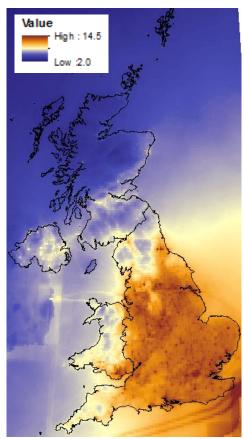

Quantities of pollutant removed (kt/yr)

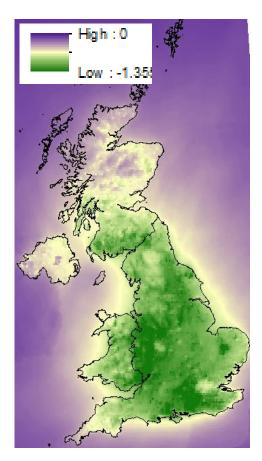

Habitat	Coniferous woodland		Semi-natural (grassland, moorland)	Crops	Total vegetation	
Area CEH landcover (km	າ ²) 15,361	13,950	135,909	63,161	228,381	
PM ₁₀	21.3	14	7.7	0	43	
PM _{2.5}	9.6	8.2	4.5	-0.1	22.2	J
SO ₂	4	7.1	17.7	9.5	38.3	
NH ₃	4.7	8.4	26.5	7.8	47.4)
NO ₂	1.6	2.6	10.4	9.1	23.7	J
O ₃	121.6	95.5	597.1	383.9	1198.2	

Where is the PM2.5 being removed


Coniferous woodland

Deciduous woodland




Base map, 2015

No vegetation scenario

Difference map

Change in exposure to PM2.5 (ug/m3)

Ave: -0.55 (-10%)

Physical account- national

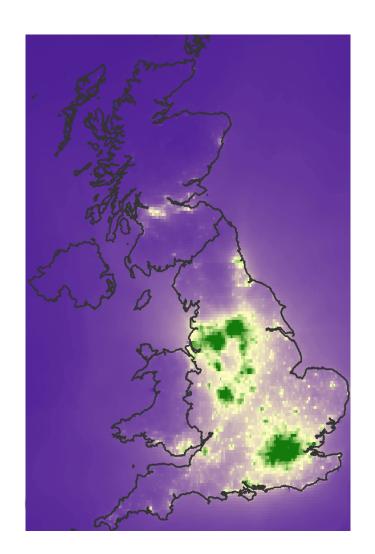
Change in pollutant concentration due to vegetation

Pollutant	Habitat	2007	2011	2015	2030
	Current vegetation	11.55	10.74	9.9	8.01
PM10	No vegetation	12.53	11.6	10.55	8.38
1 1/120	Absolute difference	-0.98	-0.86	-0.65	-0.37
	Difference (%)	-7.8	-7.4	-6.2	-4.4
	Current vegetation	6.36	6.08	4.85	3.31
PM2.5	No vegetation	7.2	6.83	5.4	3.61
	Absolute difference	-0.84	-0.75	-0.55	-0.3
	Difference (%)	-11.7	-11.0	-10.2	-8.3
SO2	Current vegetation	1.46	1.07	0.85	0.5
	No vegetation	2.07	1.55	1.21	0.72
	Absolute difference	-0.61	-0.48	-0.36	-0.22
	Difference (%)	-29.5	-31.0	-29.8	-30.6

Health outcomes

		Change in no. of hospital admissions/life years lost/deaths attributable to presence of UK vegetation			
		2007	2011	2015	2030
PM2.5	Respiratory hospital admissions	no./yr -814	no./yr -693	no./yr -533	no./yr -318
	Cardiovascular hospital admissions	-715	-609	-469	-279
	Life years lost	-42,736	-34,656	-25,209	-12,725
SO2	Respiratory hospital admissions	-308	-240	-181	-110
NO2	Respiratory hospital admissions	-346	-188	-125	-3
	Cardiovascular hospital admissions	-294	-160	-106	-3
	Life years lost	-5,618	-2,913	-1,843	-16
О3	Respiratory hospital admissions	-4,679	-4,889	-5,017	-5,861
	Cardiovascular hospital admissions	-722	-755	-775	-905
	Deaths	-1,798	-1,743	-1,899	-2,110
All pollutants	Respiratory hospital admissions	-6,146	-6,011	-5,856	-6,291
combined	Cardiovascular hospital admissions	-1,731	-1,524	-1,349	-1,186
	Life years lost	-48,354	-37,568	-27,051	-12,741
	Deaths	-1,798	-1,743	-1,899	-2,110

Economic value attributable to vegetation


		Annual value (2012 prices)			
		2007	2011	2015	2030
		£m/yr	£m/yr	£m/yr	£m/yr
PM2.5	Respiratory hospital admissions	£5.4	£4.6	£3.5	£2.1
	Cardiovascular hospital admissions	£4.6	£3.9	£3.0	£1.8
	Life years lost	£1,495.8	£1,212.9	£882.3	£445.4
SO2	Respiratory hospital admissions	£2.1	£1.6	£1.2	£0.7
NO2	Respiratory hospital admissions	£2.3	£1.3	£0.8	£0.02
	Cardiovascular hospital admissions	£1.9	£1.0	£0.7	£0.02
	Life years lost	£196.6	£101.9	£64.5	£0.5
03	Respiratory hospital admissions	£31.1	£32.5	£33.4	£39.0
	Cardiovascular hospital admissions	£4.7	£4.9	£5.0	£5.8
	Deaths	£10.8	£10.5	£11.4	£12.7
Total		£1,755.2	£1,375.2	£1,005.8	£508.1

EMEP model outputs – urban natural capital

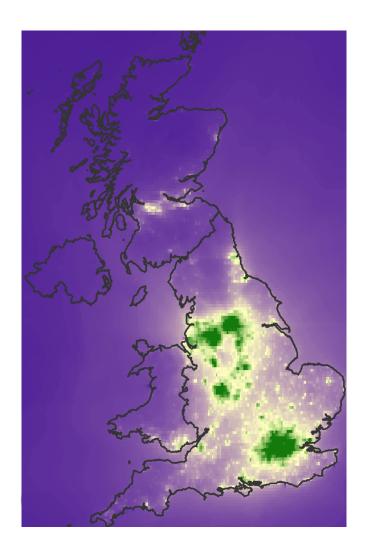
Change in exposure to PM2.5 (ug/m3) Ave: -0.06 (-1%)

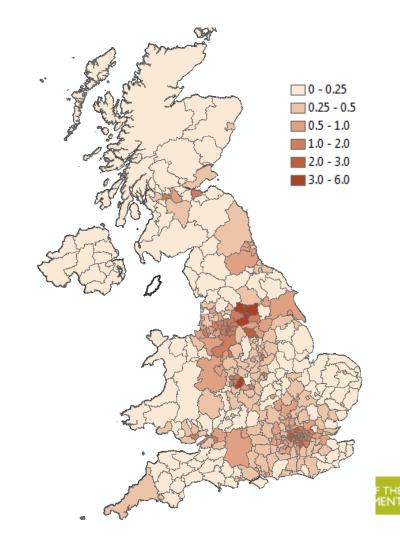
Urban natural capital: pollutant removed & health outcomes

Pollutant removed (ktonnes)

	Habitat	2015
	Urban woodland	38.2
All mallutants	Urban grassland	4.9
All pollutants	Urban fresh/saltwater	0.1
	Total urban natural capital	43.2

Health outcomes


	Health outcome	No/yr
All pollutants	Respiratory hospital admissions	-538
combined	Cardiovascular hospital admissions	-182
	Life years lost	-5,899
	Deaths	-105



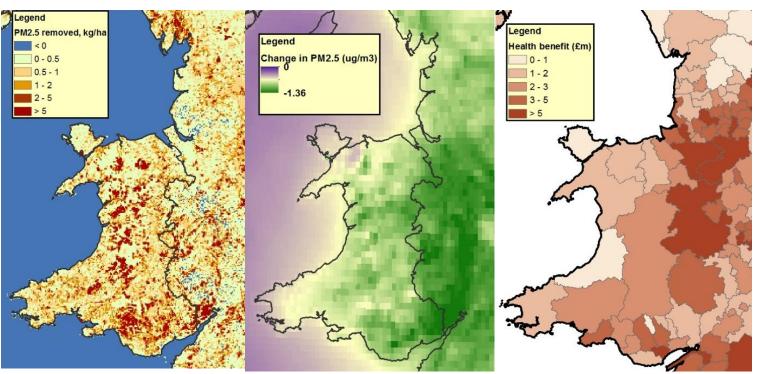
Economic value of health outcomes

Change in exposure to PM2.5 (ug/m3) Ave: -0.06 (-1%)

Value of health outcomes (£m)

URBAN ACCOUNT - MONETARY

Annual value of health benefit


		Annual value		
		2015	2030	
		£/yr	£/yr	
PM2.5	Respiratory hospital admissions Cardiovascular hospital	£800,000	£500,000	
	admissions	£700,000	£500,000	
	Life years lost	£193,800,000	£106,500,000	
SO2	Respiratory hospital admissions	£300,000	£200,000	
NO2	Respiratory hospital admissions	£200,000	£50,000	
	Cardiovascular hospital admissions	£100,000	£40,000	
	Life years lost	£12,600,000	£3,800,000	
03	Respiratory hospital admissions Cardiovascular hospital	£2,200,000	£2,800,000	
	admissions	£300,000	£400,000	
	Deaths	£600,000	£700,000	
	Total	£211,600,000	£115,490,000	

The picture in Wales (PM2.5)

PM2.5 removal (kg/ha)

Change in PM2.5 concentration (ug/m3)

Value of health outcomes (£m)

SUMMARY

- Approach is based on realistic chemical interactions, meteorology and pollutant transport
- National account shows substantial benefit (£1bn)
- Urban accounts show wider benefit to surrounding areas
- Results are broadly comparable to other studies (i-tree, USA, but differ by pollutant)

