

Ricardo Energy & Environment

Implementing Clean Air Zones and Real World Vehicle

Dr Beth Conlan

Technical Director Welsh Air Quality Forum 12th October 2017

ee.ricardo.com

Air Quality in the UK today

- 40,000 premature deaths in the UK each year due to outdoor air pollution
- Air pollution linked to cancer, asthma, stroke and heart disease, diabetes, obesity and dementia
- The health problems resulting from exposure to air pollution have a high cost to people who suffer from illness and premature death, to our health services and to business. In the UK, these costs add up to more than £20 billion every year.

HEART IMPACTS

Increased risk of heart attack, irregular heartbeat, heart failure, stroke and early death. ARDC

LUNG IMPACTS

Triggers asthma attacks and aggravates other lung diseases and damages children's lungs.

Ricardo-AEA Ltd 2

Emission Controlled Zones in the UK

Clean Air Zones

- Leeds
- Nottingham
- Derby
- Birmingham
- Southampton

Other Controlled Emission Zones (Includes planned)

- Brighton and Hove
- Bristol
- London
- Oxford
- Norwich
- Manchester
- Glasgow
- Edinburgh

Emission Controlled Sites

Heathrow Airport

Future Controlled Emission Zones

- 24 local authorities in Defra's new Air Quality Plan exceeding NO₂ emission levels
- Over 700 AQMAs across the UK
- No restriction on implementing a CAZ

Contribution of transport emissions to overall emissions

- NOx emissions in Europe are predominantly from the transport sector
- For other pollutants, other sources dominate

Emission contributions in urban areas

- Close to roads the contribution from road vehicles easily dominates concentrations and exposure – across the EU, road transport emissions account for 64% of NO2 concentrations
- Emissions are released at ground level where they have maximum impact on exposure

Emissions Regulation

What is a clean air zone?

Clean Air Zones are areas where action is focussed to improve air quality and

<u>. access restrictions for</u>

entions to improve air quality.

the cleanest vehicles are encouraged. They aim to:

- Focus on immediate actions to improve air quality r
- Support local growth and ambition
- the most polluting vehicles in r Defined geographical area restriction at Defined geographical area c.ess restriction at Defined geographical area c.ess restriction at Defined geographical area c.ess restriction at

- Charging or access restriction at its core Designed to meet NO2 compliance in shortest possible ti Designed to use Non-charge quality, does . restrictions.
- Charging Clean Air Zones Zones where, in addition to the above, vehicle owners are required to pay a charge if vehicle does not meet the particular standard in that zone.

Clea	an Air Z	one
Immediate action to improve air quality and health	Supporting local growth and ambition	Accelerating transition to a low emission economy
Access restrictic	ons to encourage	cleaner vehicles

Where do CAZ fit in?

Developing LES or non-charging

measures

Defining a charging scheme

Define the boundary

Class	Vehicle type	Vehicle	Nox emission limit
А	Buses, coaches, taxis	Buses/coaches	Euro VI
В	Buses, coaches, taxis, HGVs	HGV	Euro VI
С	Buses, coaches, taxis, HGVs, LGVs	Van (1305-3500kg)	Euro 6 (diesel) 4(petrol)
D	Buses, coaches, taxis, HGVs, LGVs and cars	Car/light comm.(1305kg)	Euro 6 (diesel) 4(petrol)

Defining a boundary

- Consider air quality problem areas
 - Non-complaint roads in national model
 - AQMAs
- Diversionary routes
- Access points and enforcement
- Impacts on key amenities and businesses

Deciding a CAZ class

- What vehicles are causing the problem?
 - Source apportionment
- What is the likely size of impact needed to solve the problem?
- What impacts will you have on businesses and residents?
 - How to keep these to a minimum?

Consider and assess range of options A Q +

Training and Technical Guidance from the Experts

Increase class

Ricardo's RapidAir model

- Applying *modern scientific computing methods* to create highly resolved air pollution fields in large urban areas.
 - Modular / semi automated approach to what is normally a very labour intensive set of processes
- Automatic handling of key parts of the analysis chain
 - Meteorology
 - Emissions
 - Background conditions
- *Reproducible analysis* is made easier- a key benefit
- No proprietary products used in the development stack

400 million prediction points, 1.2 trillion dispersion calculations

RapidAir

PM₁₀ average by postcode

Concentrations for a single postcode

KY127XL PM10_ave: 12.1747182529 PM10_min: 12.1037893295 PM10_max: 12.3360395432 NO2_ave: 12.1960162595 NO2_ave: 12.1960162595 NO2_min: 12.1078414917 NO2_max: 12.2961168289

Every postcode in Fife has annual mean modelled concentrations of NO_2 and PM_{10} . Maximum, minimum and mean values within each postcode area are provided.

These values will be useful to health professionals who use postcode level metrics in their analyses. The model has a resolution of 3m (>300million prediction points) and covers the whole Local Authority areas Data products include common GIS formats, Google Earth layers, interactive report including OpenAir.

RICARDO

Impact of CAZ on society locally

- Ricardo working with the leading CAZ cities:
 - Southampton, Leeds, Nottingham, Derby and London
- Considerations include:
 - > Charging of vehicles to enter zone
 - Placement of boundary
 - > Air quality and health benefits
 - Social and economic impacts
 - Impacts on business and displacement

AQMAs in Southampton

Evolving the scheme options

A matrix of options

Scenario	Red	Blue	Brown WA+CC	Brown WA+CC	Brown CC	Brown	сс													
	Citywide	Outer RR	inc Inner RR	exc Inner RR	inc Inner RR	exc Inn	er RR													
0 DM (not incl. CAZ response)																				
1 Citywide B	В																			
2 Citywide C	С							Reduced list for sifting												
3 Citywide D	D																			
4 OuterRR B		В																		
5 OuterRR C		С																		
6 OuterRR D		D																		
7 Inner WA+CC (Inc InnerRR) B			В																	
8 Inner WA+CC (Inc InnerRR) C			С																	
9 Inner WA+CC (Inc InnerRR) D			D				Scenario		Red	Blue	Brown WA+CC	Brown WA+CC	Brown CC	Brown CC						
10 Inner WA+CC (Exc InnerRR) B				В					Citywide	Outer RR	inc Inner RR	exc Inner RR	inc Inner RR	exc Inner RR						
11 Inner WA+CC (Exc InnerRR) C				С																
12 Inner WA+CC (Exc InnerRR) D				D		1	Citywide B		В											
13 Citywide Doughnut BD	В				D	2	Citywide C		С											
14 Citywide Doughnut BC	В				С	3	Citywide D		D											
15 Citywide Doughnut CD	С				D	4	OuterRR B			В										
16 Citywide Doughnut BD	В					5	OuterRR C			С										
17 Citywide Doughnut BC	В					6	OuterRR D			D										
18 Citywide Doughnut CD	С					7	Inner WA+CC (Inc InnerRR) B				В									
19 OuterBB Doughnut BD		в			D	8	Inner WA+CC (Inc InnerRR) C				С									
20 OuterBR Doughnut BC		B			C C	9	Inner WA+CC (Inc InnerRR) D				D									
21 OuterBR Doughnut CD		C			D	10	Inner WA+CC (Exc InnerRR) B					В								
22 OuterBR Doughnut BD		B			-	11	Inner WA+CC (Exc InnerRR) C					С								
23 OuterRR Doughnut BC		B				12	Inner WA+CC (Exc InnerRR) D					D								
24 OuterRR Doughnut CD		С				12	Citywide Doughnut BD		B				D							
25 Double Doughput BCD	D	6			D	1/	Citywide Doughnut BC		B				C							
25 Double Doughnut BCD	D				U	74			U		1	1		1						

Example sifting results

	A	ir Qua	lity Ma	anager	nent A	<u>reas</u>																			
		Emissions Weighted Vehicles %					chang	ge					Pass / Fail Criteria												
Scenario		A3024 Northam Bridge	A33 Milbrook Road West	A33 Redbridge Road	A33 Town Quay	A335 Onslow Road	A35 Burgess Road	A35 Hill Lane	Commercia Road	New Road	Victoria Road	Windmere Ave - Redbridge Hill	A3024 Northam Bridge	A33 Milbrook Road West	A33 Redbridge Road	A33 Town Quay	A335 Onslow Road	A35 Burgess Road	A35 Hill Lane	Commercia Road	New Road	Victoria Road	Windmere Ave - Redbridge Hill	Minimum (Pass / Fail)	Minimum (Pass / Fail)
1		-10%	-11%	-11%	-7%	-11%	-6%	-5%	-9%	-22%	-6%	-6%	4	4	4	4	4	4	4	4	4	4	4	4	0
4		-8%	-6%	-4%	-3%	-2%	6%	4%	-2%	-17%	0%	-2%	4	4	4	4	4	1	1	4	4	4	4	1	***
7		-9%	-9%	-4%	-3%	2%	1%	1%	-11%	-23%	0%	-1%	4	4	4	4	1	1	1	4	4	4	4	1	***
10		-7%	-10%	-5%	-3%	-2%	1%	1%	3%	-23%	0%	-1%	4	4	4	4	4	1	1	1	4	4	4	1	***
3		-26%	-24%	-25%	-21%	-24%	-21%	-21%	-23%	-31%	-15%	-21%	4	4	4	4	4	4	4	4	4	4	4	4	0
6		-27%	-26%	-20%	-23%	-24%	-1%	-5%	-25%	-35%	-2%	-7%	4	4	4	4	4	4	4	4	4	4	4	4	0
9		-23%	-31%	-16%	-21%	-2%	2%	-2%	-36%	-38%	-1%	-5%	4	4	4	4	4	1	4	4	4	4	4	1	***
12		-18%	-31%	-16%	-23%	-12%	0%	-2%	-16%	-38%	-1%	-5%	4	4	4	4	4	4	4	4	4	4	4	4	0
13		-25%	-22%	-18%	-25%	-14%	-7%	-8%	-35%	-37%	-6%	-8%	4	4	4	4	4	4	4	4	4	4	4	4	0
14		-13%	-12%	-12%	-8%	-10%	-7%	-6%	-13%	-25%	-6%	-7%	4	4	4	4	4	4	4	4	4	4	4	4	0

Key success criteria

Options should be assessed against the following criteria:

- a) cause NO2 levels in the area to reach legal compliance within the shortest time possible;
 - Primary focus is compliance with the EU directive in relation to the Western Approach
 - Secondary focus is compliance with in all other AQMAs
- b) minimise the effects and impacts on local residents and businesses, including disadvantaged groups, and have no unintended consequences;
- c) demonstrate value for money.

Key conclusions

- A CAZ is essentially an environmental charging scheme, with support measures
- However, the Government is encouraging LA's to consider LES or non-charging measures as an alternative
- Developing LES or non-charging measures needs to be done as a cross authority process considering all policy levers
- Developing a formal CAZ requires consideration of both boundary and CAZ class
 - Key objective is to meet compliance with minimal impact on residents and businesses
- Highways authorities will be a key player in the development and implementation of a formal CAZ

Beth Conlan Ricardo Energy & Environment 01235 753480 Beth.Conlan@Ricardo.com

