

Ricardo Energy & Environment

Developing a Low Emission Strategy

Dr Guy Hitchcock Knowledge Leader

8th October 2015

What is a Low Emission Strategy

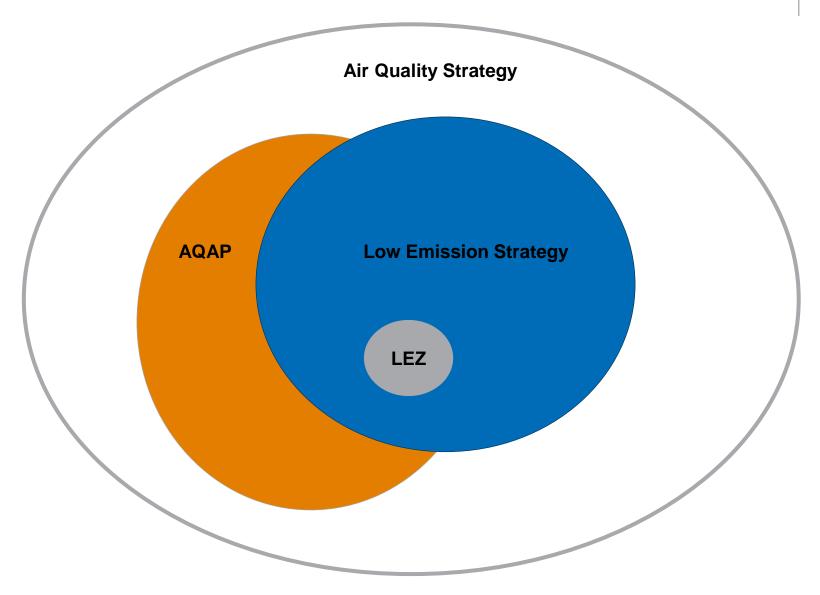
Original definition from the Low Emission Strategies Partnership: "a package of planning measures to reduce transportions sions, air quality and carbon, from new developments"

Wider definition:

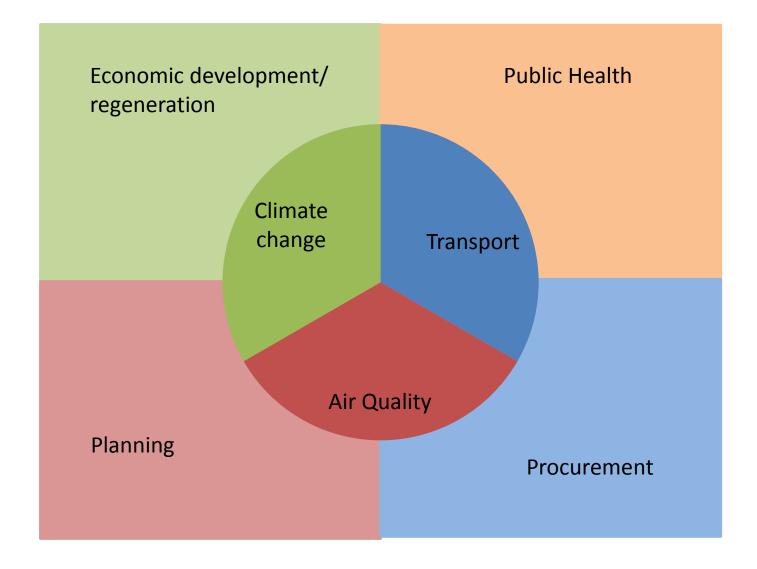
"a package of measures to remissions (not concentrations)

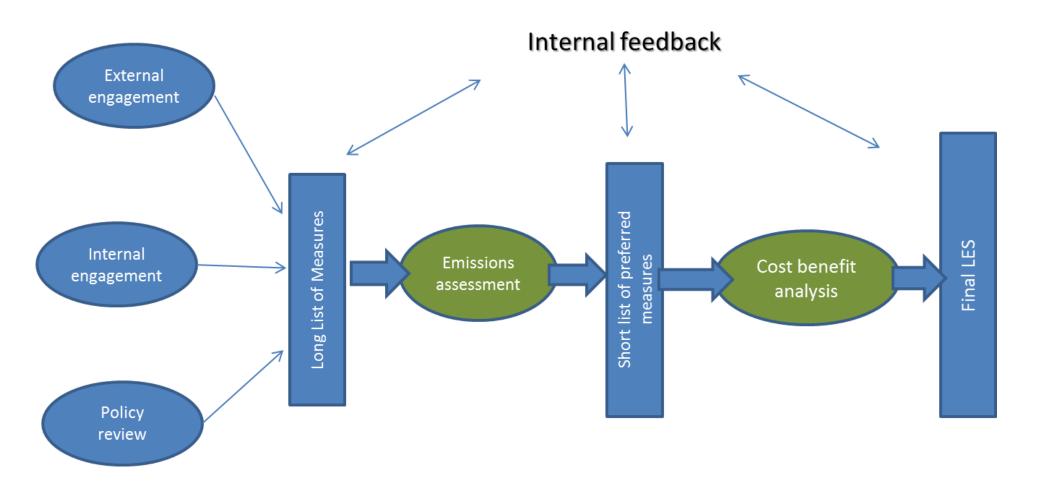
"a package of measures to remissions (not concentration)

"a package of measures to remissions (not concentrat


"a package of measures to sectors"

inissions, both air quality and carbon, from all


LES and LAQM


LES and policy integration

Developing a LES

Engagement – key stakeholders

Internal

- Transport
- Air Quality
- Climate change
- Planning and development control
- Procurement
- Taxi Licensing
- Public Health
- Fleet Management
- Human Resources

External

- Freight & Logistics
- Bus Operators
- Taxi Drivers/Businesses
- Retail interests
- Commercial interests key business
- Health Sector
- Universities
- Community and NGOs

Assessing the emissions impact of measures

Any measure can impact on emissions in three ways by influencing:

1. The fleet composition

2. Traffic levels

3. Vehicle speeds

That's easy then?!

Developing measure impacts for a LES package

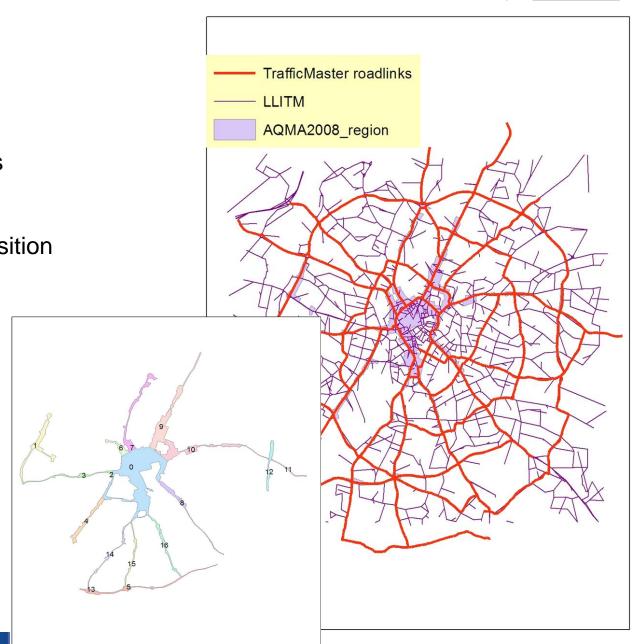
ID	Measure	Description	Fleet composition	Traffic levels	Vehicle speeds
		Regulatory LEZ			
Corrido	or based LEZ	LEZ defined for key corridors (AQMA) into Leicester. Applies to bus and HGV and is regulated by ANPR. Traffic management measures applied to stop rat running off key routes.			
LEZ1	Base LEZ	Euro 3 standard for all Bus and HGV in 2016	hus and HGV ำ Euro 3	-	-
LEZ2	Mid LEZ	Euro 4 standard for all Bus and HGV in 2016	nd HGV	-	-
ULEZ	Ultra low Emission Zone	Euro 6 standard for all bus and HGV by 2016. Sensitive scenario to see what highest Euro standard could	iels v	-	-
EcoPas	s system	Normal LEZ is applied to all bus lanes on key c Emissions charging scheme is applied to HC emission limit is free, two charges for low	Nod		
EP1	Base EcoPass	Bus at Euro 4 HGV Euro4 – free HGV Euro2-3 –Low charge, shi HGV <eruo2 charge<="" high="" td="" –=""><td>.o Min 4, adjust AGV Euro standards up</td><td>HGV Traffic <20%</td><td>-</td></eruo2>	.o Min 4, adjust AGV Euro standards up	HGV Traffic <20%	-
EP2	Ultra Low Ecopass	Euro 3 standard for all Bus and HGV in 2016 Euro 4 standard for all Bus and HGV in 2016 Euro 6 standard for all bus and HGV by 2016. Sensification scenario to see what highest Euro standard could Normal LEZ is applied to all bus lanes on key or Emissions charging scheme is applied to Horemission limit is free, two charges for low Bus at Euro 4 HGV Euro4 – free HGV Euro2-3 –Low charge, shifted HGV Euro3-6 – Low charge Bus at Euro 6 HGV Euro3 – High charge Bus at Euro 6 HGV Euro3 – High charge Agree a voluntary emission stand, the city. Set standard to Euro 4 or re Assume 80% compliance.	Set bus to Min Euro 4, adjust HGV Euro standards up	HGV Traffic <20%	-
Bus 1	Voluntary emission standard	Agree a voluntary emission stand. the city. Set standard to Euro 4 or re. Assume 80% compliance. Assume 80% compliance.	Euro 4 plus SCRT retrofit 20% non-compliant	-	-
Bus 2	Gas bus scheme	Gas buses operating from main Arriva depot. Apply to Melton road and Devonshire road – check for cross city routes from here and so impact on other corridors. Aso apply to Uppingham road to compare with TRL work.	Gas buses on 3 agreed corridors.	-	-
Bus 3	Quality corridor measures	Use data from Aylstone corridor to estimate roll out to all corridors.	-	Reduce car traffic by 3%	Check speed currently and increase – journet time reduced by 7-8 mins.

Detailed example: Euro IV Bus and HGV LEZ in 2016

- Fleet composition
 - All less than Euro IV become Euro IV?
 - All less than Euro IV are renewed so ^r
 - All less than Euro IV spread in sam
- Traffic modernations and the second of assumption of assumptions and the second of assumptions are second of assumptions and the second of assumptions are second of assumptions and the second of assumptions are second of assumptions and the second of assumptions are second of assumptions and the second of assumptions are second of assumptions and the second of assumptions are second of assumptions are second of assumptions are second of assumptions and the second of assumptions are second of a

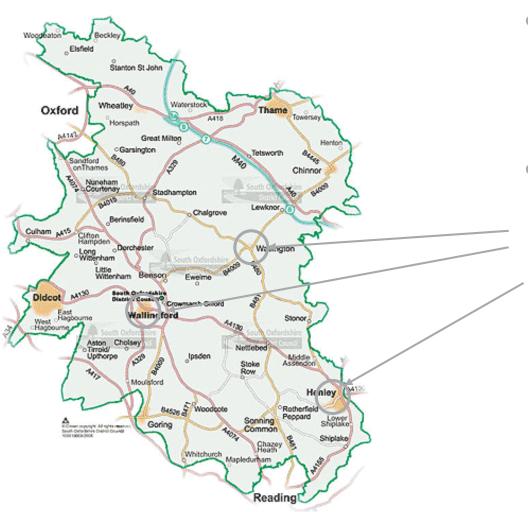
raffic levels go down?

- Vehicle speeds
- No change?
- Less vehicles, so speeds may increase?


xisting 2016 fleet greater that Euro IV?

e the same?

Example emissions model 1 - Leicester



- Based in EfT
- Leicester traffic model as basis
- DfT count data for fleet composition
- Traffic master data for speeds
- Zonal aggregation
- NOx, PM and CO2

Example emissions model 2 – South Oxfordshire

- District wide emissions model
 - EfT basis
 - DfT traffic data
- Three AQMA sub models
 - EfT/ADMS
 - Local count data
 - Local bus fleet data
 - Traffic master speeds
 - DfT complementary data
 - Emissions/concentrations

Cost Benefit Analysis

- Damage/Abatement costs savings
- Measure costs
 - Capital expenditure (CapEx)
 - Operating expenditure (OpEx)
 - Public sector costs
 - User/operator costs
 - Treasury costs (change in tax take)?
- Cost benefit assessment
 - Assessment period?
 - Net present value of costs and benefits over period > 0
 - Benefit Cost Ratio (BCR) > 1

Damage and Abatement costs

Damage cost

- Simplified estimate of cost of damage of emission to health, crops, etc
- Emissions X damage cost

Abatement cost

- Used for when in areas of noncompliance
- Represents costs in terms of national average cost to abate emissions
- Applies only to portion of emission that effect compliance
- Choice of abatement costs to reflect local conditions
- Default value £29,150
- Much higher than damage costs

Cub acatan	Danalina	Abatamant	Manning Abotemant Coot
Sub sector	Baseline Technology	Abatement Measure	Marginal Abatement Cost (£/Tonne of NOx) 2015
HGV	Euro II	SCR	5099
HGV	Euro III	SCR	5380
Buses	Euro II	SCR	6251
Buses	Euro I	Hybrid	6500
Buses	Euro I	SCR	6625
Buses	Euro III	SCR	7257
Buses	Euro II	Hybrid	7462
HGV	Euro IV	SCR	8053
Buses	Euro III	Hybrid	9423
Buses	Euro IV	SCR	11889
Buses	Euro I	Electric	14669
Buses	Euro II	Electric	14872
Buses	Euro III	Electric	17352
Articulated HGV	New Euro V	Euro VI	17743
Buses	Euro IV	Hybrid	18391
Buses	New Euro V	Euro VI	24852
Rigid HCV	ivew Euro V	Euro VI	20074
Buses*	Euro IV	Electric	29150
Buses	Furo V	Hydrogen	72902
Diesel LGV - class 1	New Euro 5 class	Euro 6	79323
Diesel LGV	Euro 1	Electric	100665

Example of measure costs – Euro IV LEZ

Public sector costs

- How will scheme be implemente `[□]R, manual, ?

- Capital costs of scheme e realizable ocal knowledge roots

 Derators costs

Operators costs

- Vehicle replacement .
 - How many vehicles will be affected?
 - What will they do?
 - Buy new?
 - Move fleet around
 - Residual values?
- What about operating costs?
 - New or different vehicles may cost more to run?

Benefits over time

- What time frame do we use?
 - Relate to life time of measures usually 10 or 20 years
- We have assessed the emissions benefit for 1 target year
- However our assessment is over a 10 or 20 years?
 - Is the emission saving the same every year?
 - Should we model every year?
 - Should we estimate trend?
 - In theory benefit will reduce over time as fleet improves
- A simple trend may be best

Example CBA results 1 - Leicester

Scenario	Total PV benefits 2016- 2025 (£millions)	Total PV cost 2016- 2025 (£millions)	NPV (£millions)	Rank (NPV)	Benefit Cost Ratio	Rank (BCR)
Bus_LEZ	£3.49	£1.62	£1.87	3	2.15	6
Bus_Retrofit	£3.32	£1.19	£2.13	2	2.79	4
Bus_Gas	£8.04	£1.83	£6.21	1	4.40	1
HGV_DSP	£0.86	£0.29	£0.57	5	2.93	3
HGV_Eco	£0.85	£0.31	£0.54	6	2.74	5
HGV_Gas	£0.64	£1.40	-£0.76	8	0.46	8
EV	£1.85	£0.49	£1.36	4	3.76	2
Smart	£1.70	£1.69	£0.02	7	1.01	7
Total*	£15.68	£7.63	£8.05		2.05	

Example CBA results 2 - South Oxfordshire

Scenario	Total PV benefits 2016-2025 (£millions)	Total PV cost 2016- 2025 (£millions)	NPV (£millions)	Rank (NPV)	Benefit Cost Ratio	Rank (BCR)
Area measures						
EV 2% (a)	1.41	0.38	1.02	2	3.68	3
EV 2% (b)*	6.11	21.62	-15.50	13	0.28	9
Bus 1	0.29	0.50	-0.20	5	0.59	7
Bus 2*	0.84	0.04	0.81	3	22.24	2
HGV*	13.86	0.50	13.36	1	27.76	1
Smart	2.37	5.72	-3.35	9	0.41	8
AQMA measures						
Wallingford BusX	0.09	0.79	-0.70	6	0.12	10
Henley LEZ (a)	0.10	1.31	-1.21	8	0.07	12
Henley LEZ (b)	0.10	7.98	-7.88	11	0.01	13
Watlington HGV1	0.20	0.14	0.06	4	1.44	4
Watlington HGV2	0.07	0.87	-0.80	7	0.08	11
Combined						
Area LES	23.48	28.37	-4.89	10	0.83	5
Area LES Plus AQMA	23.94	38.15	-14.21	12	0.63	6
Package - public costs	19.23	10.24	8.99		1.88	
* Opex savings adde						

Some conclusions

 A Low Emission Strategy (LES) is an area strategy designed to reduce emissions of both air pollutants and GHG pollutants

- Developing a LES requires
 - An evidence base quantification
 - Engagement with stakeholders
 - Internal a council wide approach
 - External to get a partnership approach
- Focus today has been on the evidence base
 - Often quite a few data/evidence gaps
 - Key gap is impact of measures on actual activity e.g. uptake of technologies
- Significant effort is also required to engagement
 - In developing appropriate measures
 - Long term implementation

Thank-you for your attention

Any questions?